
 0?? 8 Automated Trader | Q1 2010 Q1 2010 | Automated Trader 7 0??

???

For those conducting intensive calculations
on large data sets, recent advances in
GPU computing have been little short of a
revelation; no more waiting days for results,
or having to invest in your own giant cluster
or supercomputer. On that basis, GPU
computing seems a natural fi t with quants’
favourite MATLAB, which probably explains
why the people at Accelereyes dreamt up
their Jacket application for GPU-enabling
MATLAB. Andy Webb takes it for a gallop
round the Automated Trader track.

MATLAB’s Racing Jacket

Anyone opening Automated Trader for the
fi rst time wouldn’t take long to realise that
our readers spend quite a lot of their time

thinking about speed, which means that we all spend a
corresponding amount of time writing about it. Until
now, much of our focus has been on speed at the point
of trade execution; fastest connectivity, colocation,
in-processor-cache matching engines – and so on.
We haven’t expended so many words on speeding
up offl ine calculations, such as the severe number
crunching required when optimising portfolios or
parameters for trading models.

That’s all about to change, for while there’s nothing
to stop you using Accelereyes Jacket as part of a real
time trading program (though in view of MATLAB
API calls, perhaps not a very high frequency one),
it has exceptional potential for speeding up the sort
of offl ine calculations mentioned above. Though,
as will be seen, “speeding up” is something of an
understatement...

The basics
Jacket is a companion application for MATLAB
that provides access to GPU hardware
that is compliant with NVIDIA’s CUDA
architecture. While CUDA is a C language
based environment, you don’t have to write
C code to use Jacket with MATLAB. Jacket
protects you from all the heavy lifting
implicit in C programming by providing a
layer of abstraction that enables you to carry
on writing standard MATLAB code (with

a few minor changes) while still being able to take
advantage of the CUDA environment and associated
CUDA-enabled GPU hardware.

Perhaps the most striking things about Jacket are
the simplicity and depth of its conception. Rather
than creating a whole pile of new GPU-specialised
MATLAB functions, Jacket goes right to the heart
of matter by providing a dedicated set of GPU
data structures that can be used instead of their
corresponding standard MATLAB equivalents.
By using a Jacket data structure calculations and
manipulations relating to that structure will be
automatically done on your GPU, not your CPU. (We
hate to think what the Accelereyes guys had to get up
to behind the scenes in C/CUDA world to pull off
this rather handy trick, but we’re just glad it was them
not us.)

There are a total of eight different Jacket data
structures for MATLAB. To take the simplest example,
the Jacket “gsingle” structure casts a MATLAB matrix
to a single precision fl oating point GPU matrix. So
entering the following in the MATLAB command
window:

a = single([1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]);

...creates a simple 4 by 4 matrix of standard MATLAB
type single, as can be seen by subsequently entering
“a” (without quotes) in the command window, which
generates the following output:

a =
 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

...also confi rmed by a quick glance at the MATLAB
Workspace window (see Figure 1).

Then, by entering the following command, we enter
Jacket GPU world:

a= gsingle(a);

The MATLAB Workspace window provides
confi rmation of the change (see Figure 2).

From here on (unless we cast it to another data type)
functions applied to the variable “a” will (if supported
by Jacket - more on this later) be conducted on the
GPU, rather than the CPU. There is a performance
penalty to casting data structures to and fro between
Jacket and MATLAB data types, because in effect
you are shunting data to and fro between CPU and
GPU memory. However, if you have a task that
can be massively accelerated by the GPU, but that
also requires a call to a MATLAB function not yet
supported by Jacket, it is still well worth moving the
data back onto the CPU. All that is required is:

a= single(a);

The hardware
Before moving on to examine Jacket’s capabilities
in more detail, a word about the GPU hardware on
which it runs. As mentioned earlier, Jacket provides a
layer of abstraction between MATLAB and NIVIDIA’s
CUDA environment, which takes advantage of
CUDA-enabled hardware. At present the term
‘CUDA-enabled hardware’ covers a broad range of
NVIDIA graphics and dedicated GPU computing
cards, including some 80 GeForce cards (minimum
256Mb memory required), 40+ Quadro cards, plus
NVIDIA’s dedicated high performance computing
(HPC) Tesla hardware.

While you obviously get what
you pay for in terms of
performance, this extensive
coverage means that there’s
a good chance that plenty of
existing standard workstations
are already CUDA-enabled,
by virtue of their installed
graphics cards. Even if a workstation
isn’t already CUDA-enabled, the costs
of making it so are hardly prohibitive. For

example, a video card like the top of the range
GeForce GTX 295 with 1792Mb of memory can
be picked up for less than USD300 with a bit of
searching – and that delivers 480 CUDA processing
cores. (Which when you consider that a decent CPU
might have only four cores, rather puts things into
perspective.) Dedicated Tesla hardware is rather

pricier; for example, the Tesla C1060 (see
Figure 3) card with 4Gb of memory can be
found for around USD1200.

Our hardware rig for this review consisted
of a workstation fi tted with a Xeon W3570
3.2Ghz CPU (four cores), 12Gb of RAM
and three Tesla C1060s. The motherboard

was an Asus P6T7 WS with seven PCIe x16 Gen2
slots (PCIe x16 Gen2 slots are necessary to get the
best out of the C1060s; lower spec slots will work
but throttle their performance.) The graphics card
was an NVIDIA Quadro NVS 450, which is CUDA-
enabled, but wasn’t used as part of the Jacket testing.
While the single W3570 CPU certainly meant the
machine wasn’t top of the line in CPU terms, this
setup nevertheless allowed us to make reasonably
realistic comparisons of MATLAB’s performance in
three modes:

• CPU with implicit multiprocessing1 turned
on (the default in MATLAB since R2007a).

• CPU with the MATLAB Parallel Computing
Toolbox (using all four of the CPUs cores)

• Jacket using a single C1060

▲

Figure 1

Figure 2

Figure 3

1 Implicit Multiprocessing - multithreaded computation runs in a single instance of MATLAB and generates simultaneous instruction streams on a multiple CPU
(multiprocessor or multi core) system. Th e multiple processors share the memory of a single computer. Th e work to be processed is implicitly partitioned for execution on
multiple threads. Multithreaded computation in MATLAB is enabled by default. When enabled, MATLAB automatically detects the number of CPUs on the system
and recommends the number of threads based on that. On the assumption that few if any MATLAB users would still be running MATLAB on a single core machine,
implicit multiprocessing was left on for the purposes of the review.

MATLAB’s Racing Jacket

In addition, Jacket has recently added
support for MATLAB’s Parallel Computing
Toolbox (PCT) and Distributed
Computing Server (DCS). This enables
the use of multiple items of CUDA-
enabled hardware on a single machine
(PCT) or multiple machines (DCS).
Unfortunately, due to hardware availability
and time constraints, we were unable to
conduct any meaningful testing of this by
the time we went to press. However, an
update on this will be published on www.
automatedtrader.net in March.

A magic start
We kicked our testing off with the simple
(but not particularly useful) exercise of
multiplying two magic squares2. The code
below creates two magic squares X and Y,
which are 10,000 rows by 10,000 columns
in size, multiplies them together and
assigns their output to the variable A.

tic;

 Y = magic(10000);
 X = magic(10000);

 A= X*Y;

time = toc;

As Figure 4 shows, MATLAB’s implicit
multiprocessing made a decent job of distributing
the workload across the test workstation’s CPU
(Note: ‘CPU Usage History’ shows eight threads,
not four cores). Using just the CPU with implicit
multithreading turned on, this script took 63.063
seconds to complete.

By contrast, the Jacket version of the script (which
simply converted the magic number matrices to the
Jacket gdouble data type before multiplying) took
21.1643 seconds to complete; a worthwhile
improvement.

In both cases, these results were the average
achieved over ten consecutive attempts. This
approach of running multiple consecutive
attempts can in some circumstances distort the results,
because “warming up” a computation under CUDA
often tends to reduce the execution time. Therefore
the fi rst execution of the Jacket version of the code is
often the slowest by an appreciable margin. However,
in this case the Jacket version of the code performed
almost identically on each iteration.

 0?? 8 Automated Trader | Q1 2010

The performance gap when conducting the same test
using random number matrices (rather than magic
squares) of the same size was rather larger - 51.9049
seconds and 10.7688 seconds respectively (both fi gures
also an average of ten attempts).

Squeezing to the max
As mentioned earlier, GPU computations can run
faster as they “warm up”; the fi rst run of code in a new
MATLAB session will often be slower than subsequent
passes through the same code. You can also warm up
Jacket to improve its initial performance by running
its “ginfo” command:

However, this only warms up Jacket and not
the underlying NVIDIA CUDA environment.
Fortunately one of Jacket’s users (Torben Larsen,
Professor in Radio Frequency Electronics and Systems
at Aalborg University, Denmark) has written a rather
neat function that deals with this issue, which you can
fi nd here:

Figure 4

Figure 5

▲

2 MATLAB’s magic function magic(n) returns an n-by-n matrix constructed from the integers 1 through
n^2 with equal row and column sums. Th e order n must be a scalar greater than or equal to 3.

http://www.accelereyes.com/wiki/index.php?title=TL-
Warm_up_of_Jacket_and_CUDA

Running this prior to any heavyweight production
code should ensure optimal performance.

As explained in our MATLAB review (Q2 2009 issue),
MATLAB vectors and matrices are most effi ciently
manipulated when stored in columns in contiguous
blocks of RAM. If there is a “vectorised” method
of programming something that allows the use of
contiguous memory blocks, then that is preferred to
the ‘loop equivalent’ method. The same applies to
Jacket, which also takes advantage of the inherent
parallelism of the MATLAB M-language.

While avoiding unnecessary loops when writing Jacket
based functions is important for this reason anyway, a
further factor is NVIDIA’s nvcc compiler. Compiling
kernels with nvcc is computationally expensive and
it is important to avoid doing this by inadvertently
using iterating parameters that might force an nvcc
compilation on each iteration of a loop. The classic
way to fail to do this is to have a mix of Jacket and
MATLAB data types used in a calculation in a loop or
even in just general calculations. So for example...

x = geye(5000);

for y = 1:10000,

x * y;

end

...is bad news because it multiplies x (a Jacket data
type) by y (a MATLAB data type) within a loop.
Needless to say, we managed to fall into this trap
almost immediately, when instead we should have
used...

x = geye(5000);

for y = gdouble(1:10000),

x * y;

end

...because both x and y are now Jacket data types, the
calculations are pure, not hybrid.

Looping on acid
As mentioned above, the general ideal when writing
MATLAB/Jacket code is to avoid unnecessary loops.

However, where the use of loops is inevitable, Jacket
has a seriously fast ace up its sleeve in the form of its
gfor/gend loops. While the standard MATLAB for/end
construct conducts each iteration of a loop sequentially,
the Jacket gfor/gend construct runs all loop iterations
simultaneously. It does this by “tiling out” the values
of all loop iterations and then calculating the values
of all tiles at the same time using the individual cores
on a CUDA-enabled GPU. The acceleration made
possible by this is, to put it mildly, pretty signifi cant.
For example, the following not very useful pair of
conventional nested for/end loops...

x = rand(750,750);
y_c = zeros(iterations, iterations, matrixsize);
for k = 1:iterations
 for m = 1:size(x(:,1))
 y_c(m,:,k) = abs(fft(x(m,:)));
 end
end

…took an average (ten attempts with negligible
difference between each result) of 34.83 seconds with
the function inputs “iterations” and “matrixsize” both
set to 750. However, the following “Jacketised” code…

x = gsingle(rand(750,750));
y = gzeros(iterations, iterations, matrixsize);
for k = 1:iterations
 gfor m = 1:size(x(:,1))
 y(m,:,k) = gforce(abs(fft(x(m,:))));
 gend
end

…which replaces just the inner of the two for/end
loops with a gfor/gend loop and specifi es Jacket data
types, completed its fi rst attempt 2.100765 seconds,
with all subsequent nine attempts in the range
1.811475 to 1.816984 seconds.

Obviously MATLAB already offers - assuming you buy
its PCT - parallel looping of this type with its parfor/
end construct. So we thought it might be instructive
to compare the performance of parfor and gfor loops
with another not very real world example that also uses
MATLAB’s discrete Fourier transform (fft) function:

y= zeros(100,100);
for k=1:100
 x= rand(100);
 parfor m=1:10000,
 y= fft(x)*m;
 end
end

▲

MATLAB’s Racing Jacket

 0?? 8 Automated Trader | Q1 2010

In order to access all the cores on the test rig’s CPU for
the calculation, we created a MATLAB PCT pool with
four workers with the following command...

matlabpool open 4

...before running the code fragment, which took an
average (over ten very similar attempts) of 29.268
seconds to complete, with the MATLAB PCT keeping
all four cores well loaded throughout the test.
By comparison, the Jacket version of the code:

y= gzeros(100,100);
for k=1:100
 x= grand(100);
 gfor m=1:10000,
 y = fft(x)*m;
 gforce(y);
 gend
end

…took an average of 4.1538 seconds. To be fair
to MATLAB’s parfor loop, while the difference is

obviously very signifi cant, a major part of the work
load is the ten thousand iterations in the nested inner
loop. The parfor loop can only distribute this across
four cores and while each of those cores was running
at a considerably faster clock speed than those on
the GPU, the GPU has 60 times as many cores at its
disposal. This obviously gives the Jacket gfor/gend
construct something of head start when tiling out
loops.

What you can do, what you can’t
We’ve been tracking Jacket for a while and have
noticed that Accelereyes has a pretty aggressive
timeline when it comes to extending coverage of
native MATLAB functions. At the back of the Jacket
manual is a grid showing a comprehensive list of
MATLAB functions together with four completion
categories: fully supported, partially supported, soon
to be supported and not supported. From looking at
the manual for version 1.2 of Jacket dated October
1st 2009 and comparing it with the manual for the
current version that we tested (version 1.2.2 dated
January 4th 2010) it’s reassuring to note the migration

???

Is it worth it?
If the preceding paragraph describes the sort of
work you do, then the answer is a resounding yes. A
standard license allows you to run Jacket on a single
GPU and costs USD1750. Even after you factor in
the cost of CUDA-enabled hardware - which you may
already have anyway - that looks a serious bargain.
Adding licenses for additional GPUs on the same
machine costs USD750 a pop up to a total of four
GPUs, though if you want to make the most of these
additional units in MATLAB you’ll also need to buy
the MATLAB PCT. Real speed freaks will probably
want to cut straight to the chase with the 8 GPU
HPC Cluster License, which costs USD7250 and also
includes support for the MATLAB DCS.

The thing that probably most impressed us about
Jacket (apart from the raw speed) was the simplicity.
The creation of GPU data types for MATLAB was a
masterstroke because of the transparency it delivers to
the end user. In many cases, just changing a handful
of variables from MATLAB to Jacket data types can
boost performance dramatically. And if loops are your
thing, gfor/gend simply rocks.

The road ahead looks promising too; Accelereyes have
steamed ahead in expanding their MATLAB function
support and the prospects of combining Jacket with
NVIDIA’s Fermi technology when it hopefully lands
in late Q1/early Q2 are frankly mouth watering.

So, what’s our view? Put it this way; in the world of
MATLAB ‘big numbers’, conventional CPUs can only
take you so far; Jacket takes you the rest of the way
– and then some...

Hat tips
In addition to Accelereyes support, three people were
instrumental in helping the Automated Trader team
put together this review:

• Pete Dhillon of 3D Computers - www.3d-
computers.co.uk – for providing one of 3D’s HPC
workstations for this review and getting NVIDIA
involved when their distributor wasn’t.

• Mike Walsh of NVIDIA – for turning out at very
short notice, at great inconvenience, to sort out
something in minutes that NVIDIA’s distributor
had failed to sort in weeks.

• Torben Larsen of Aalborg University – for sharing
his Jacket/MATLAB expertise with us and for
preventing us from making assorted dumb mistakes.

Gentlemen - many thanks.

...and your data magically reappears in the variable
inspector (see Figure 9).

Again, this isn’t a major problem, but it would be
good if it was fl agged up in the docs; a point that we
- once our collective heart rate returned to normal
- emphasised to Accelereyes.

Horses for courses
The performance kicker that Jacket delivers to MAT-
LAB is so impressive that the natural inclination is
to Jacketise all your code and try to do everything on
the GPU. In practice, things aren’t so straightforward.
Simply chucking everthing onto the GPU doesn’t work;
small calculations or inherently serial operations are
more effi ciently performed on the CPU. A further con-
sideration (see “What you can do, what you can’t” above)
is of course whether Jacket supports the functions or
operations you are trying to use.

Having said all that, if you have large datasets to mince
in MATLAB, then Jacket is excellent value. As our
review shows, the performance boost obviously depends
upon what you are doing, but so many of Jacket’s
strongest suits (large matrix manipulation etc) relate to
tasks commonplace for Automated Trader readers. If
Jacket covers your MATLAB function bases and you’re
otherwise considering fi lling a data centre with a CPU-
based cluster, then this is your chance to save the planet.

▲

gforce command compels Jacket to calculate values. The
fragment above took an average of 4.1538 seconds
to run; but before we added the gforce command
– 0.0845 seconds. Cough…

We would stress that this absolutely isn’t a problem
(quite the opposite in fact in terms of effi ciency) but
it is defi nitely something to bear in mind. A similar
point – and one that we would cite as a partial excuse
for our gforce debacle – is the case of the vanishing
variable. We noticed that when we completed code
test runs, the names of Jacket data type variables and
their description appeared as normal in the MATLAB
Workspace window (see Figure 6).

However, if you double clicked (in this case on x) to
inspect the contents of a variable, it appeared (see
Figure 7) to be empty...

...but if you output to the MATLAB Command
Window (see Figure 8) you got numbers - lots of
numbers:

It turns out that you cannot as yet see Jacket variable
contents in the MATLAB variable inspector. However,
as an alternative to clogging up the Command
Window, you can simply cast the variable back to a
MATLAB type with...

x = single(x);

rate (in the right direction!) across the support
columns.

During the review, we spotted one signifi cant (partial)
omission from the list of supported MATLAB functions
– left matrix divide (mldivide or \ in MATLAB) for
double precision values (or in Jacket’s case gdouble).
Single precision values are supported, but unfortunately
there is plenty of legacy code out there using mldivide
that needs double precision and is thus not fully
portable to Jacket. There’s also quite a lot of code out
there - and certain members of the Automated Trader
review team should hang their heads in shame at this
point – that abuses the MATLAB inv function to solve
the system of linear equations when they should be
using mldivide anyway, so this is an opportunity for
faster/better code on two counts. (Those same sinful
members of the review team can also dream on, because
Jacket doesn’t currently support inv either.) Happily,
when we raised this with Accelereyes we were told that
gdouble support for mldivide should appear soon in
Jacket version 1.3.0 or 1.3.1.

Lazy execution and vanishing variables
One important thing to be aware of is that Jacket
employs a lazy execution design to ensure
optimal performance, which means that
it does not launch GPU kernels until the
results are requested, either in a display
or subsequent CPU-based computation.
(There are some exceptions to this rule,
such as preventing kernels becoming too
large to run on the GPU).

Needless to say, we missed the
signifi cance of this when conducting
our initial testing. To begin with, we
were getting demented performance on
substantial calculations; except to be
more accurate they would have been
substantial calculations – if we had
actually forced Jacket to do them. To
repeat a code fragment from above...

y= gzeros(100,100);
for k=1:100
 x= grand(100);
 gfor m=1:10000,
 y = fft(x)*m;
 gforce(y);
 gend
end

...our omission and the source of our embarrassment
is arrowed and in bold. As its name implies, the

???

Q1 2010 | Automated Trader 7 0??

Figure 6

MATLAB’s Racing Jacket

 0?? 8 Automated Trader | Q1 2010

Figure 8

Figure 7

Figure 9

