| array | avg (const array &input, int dim=-1) |
| average along a dimension | |
| template<typename ty > | |
| ty | avg (const array &input) |
| average of all elements in array | |
| array | var (const array &input, bool isbiased=false, int dim=-1) |
| variance along a dimension | |
| array | var (const array &input, const array weights, int dim=-1) |
| weighted variance along a dimension | |
| template<typename ty > | |
| ty | var (const array &input, bool isbiased=false) |
| variance of all elements in array | |
| template<typename ty > | |
| ty | var (const array &input, const array weights) |
| weighted variance of all elements in array | |
| array | cov (const array &input, bool isbiased=false) |
| covariance of row observations | |
| array | cov (const array &X, const array &Y, bool isbiased=false) |
| covariance between two jointly distributed random variables | |
| array | std (const array &in, bool isbiased=false, int dim=-1) |
| standard deviation along a dimension. | |
| template<typename ty > | |
| ty | std (const array &input, bool isbiased=false) |
| standard deviation of all elements in a vector. | |
| array | median (const array &input, int dim=-1) |
| median along a dimension | |
| template<typename ty > | |
| ty | median (const array &input) |
| median of all elements in array | |
| template<typename ty > | |
| ty | corrcoef (const array &x, const array &y) |
Correlation coefficient between vectors x and y. | |
| array af::avg | ( | const array & | input, |
| int | dim = -1 |
||
| ) |
average along a dimension
| [in] | input | |
| [in] | dim | dimension along which to operate (-1 indicates first nonsingleton dimension) |
dim in the input | ty af::avg | ( | const array & | input | ) |
average of all elements in array
| [in] | input |
| array af::var | ( | const array & | input, |
| bool | isbiased = false, |
||
| int | dim = -1 |
||
| ) |
variance along a dimension
| [in] | input | |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| [in] | dim | dimension along which to operate (-1 indicates first nonsingleton dimension) |
| array af::var | ( | const array & | input, |
| const array | weights, | ||
| int | dim = -1 |
||
| ) |
weighted variance along a dimension
| [in] | input | |
| [in] | weights | placed on each element (same size as input) |
| [in] | dim | dimension along which to operate (-1 indicates first nonsingleton dimension) |
weights instead of unit weight | ty af::var | ( | const array & | input, |
| bool | isbiased = false |
||
| ) |
variance of all elements in array
| [in] | input | |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| ty af::var | ( | const array & | input, |
| const array | weights | ||
| ) |
weighted variance of all elements in array
| [in] | input | |
| [in] | weights | placed on each element (same size as input) |
| array af::cov | ( | const array & | input, |
| bool | isbiased = false |
||
| ) |
covariance of row observations
| [in] | input | rows are observations, columns are variables |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| array af::cov | ( | const array & | X, |
| const array & | Y, | ||
| bool | isbiased = false |
||
| ) |
covariance between two jointly distributed random variables
| [in] | X | |
| [in] | Y | |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| array af::std | ( | const array & | in, |
| bool | isbiased = false, |
||
| int | dim = -1 |
||
| ) |
standard deviation along a dimension.
| [in] | in | The input matrix |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| [in] | dim | dimension along which to operate (-1 indicates first nonsingleton dimension) |
dim in the input | ty af::std | ( | const array & | input, |
| bool | isbiased = false |
||
| ) |
standard deviation of all elements in a vector.
| [in] | input | |
| [in] | isbiased | if true then use sample variance (N); otherwise if false (default) use population variance (N - 1) where N=input.elements() |
| array af::median | ( | const array & | input, |
| int | dim = -1 |
||
| ) |
median along a dimension
| [in] | input | |
| [in] | dim | dimension along which to operate (-1 indicates first nonsingleton dimension) |
dim in the input | ty af::median | ( | const array & | input | ) |
median of all elements in array
| [in] | input |
| ty af::corrcoef | ( | const array & | x, |
| const array & | y | ||
| ) |
Correlation coefficient between vectors x and y.