Functions | |
| array | lu (const array &in) |
| LU factorization (packed) | |
| void | lu (array &lower, array &upper, const array &in) |
| LU factorization. | |
| void | lu (array &lower, array &upper, array &pivot, const array &in) |
| LU factorization (with pivoting) | |
| array | qr (const array &in) |
| QR factorization (packed). | |
| void | qr (array &q, array &r, const array &in) |
| QR factorization. | |
| void | qr (array &q, array &r, array &tau, const array &in) |
QR factorization with tau. | |
| array | cholesky (unsigned &info, const array &X, bool is_upper=true) |
| Cholesky decomposition ("Y^T * Y == X"). | |
| array | hessenberg (const array &in) |
| Hessenberg matrix form. | |
| void | hessenberg (array &h, array &q, const array &in) |
Hessenberg matrix h with unitary permutation matrix q. | |
| array | eigen (const array &in, bool is_diag=false) |
| Eigenvalues. | |
| void | eigen (array &values, array &vectors, const array &in) |
| Eigenvalues and eigenvectors. | |
| array | svd (const array &in, bool is_diag=false) |
| Singular values. | |
| void | svd (array &s, array &u, array &v, const array &in) |
| Singular values with unitary bases: in = u * s * v. | |
| array af::lu | ( | const array & | in | ) |
LU factorization (packed)
| [in] | in |
| void af::lu | ( | array & | lower, |
| array & | upper, | ||
| const array & | in | ||
| ) |
LU factorization.
| [out] | lower | triangular matrix |
| [out] | upper | triangular matrix |
| [in] | in |
| void af::lu | ( | array & | lower, |
| array & | upper, | ||
| array & | pivot, | ||
| const array & | in | ||
| ) |
LU factorization (with pivoting)
| [out] | lower | triangular matrix |
| [out] | upper | triangular matrix |
| [out] | pivot | indices |
| [in] | in |
| array af::qr | ( | const array & | in | ) |
QR factorization (packed).
| [in] | in |
| void af::qr | ( | array & | q, |
| array & | r, | ||
| const array & | in | ||
| ) |
QR factorization.
| [out] | q | unitary rotation matrix |
| [out] | r | upper triangular |
| [in] | in |
| void af::qr | ( | array & | q, |
| array & | r, | ||
| array & | tau, | ||
| const array & | in | ||
| ) |
QR factorization with tau.
| [out] | q | orthogonal matrix |
| [out] | r | upper triangular matrix |
| [out] | tau | Additional information about q |
| [in] | in |
| array af::cholesky | ( | unsigned & | info, |
| const array & | X, | ||
| bool | is_upper = true |
||
| ) |
Cholesky decomposition ("Y^T * Y == X").
| [out] | info | details on result of decomposition |
| [in] | X | |
| [in] | is_upper | true for upper triangular solution, false for lower triangular solution |
| array af::hessenberg | ( | const array & | in | ) |
| void af::hessenberg | ( | array & | h, |
| array & | q, | ||
| const array & | in | ||
| ) |
Hessenberg matrix h with unitary permutation matrix q.
such that in = q * h * q^T. Requires ArrayFire Pro.
| [out] | h | Hessenberg matrix |
| [out] | q | unitary matrix |
| [in] | in |
| array af::eigen | ( | const array & | in, |
| bool | is_diag = false |
||
| ) |
Eigenvalues.
Requires ArrayFire Pro.
| [in] | in | |
| [in] | is_diag | true then produce diagonal matrix of eigenvalues, false then vector of eigenvalues |
| void af::eigen | ( | array & | values, |
| array & | vectors, | ||
| const array & | in | ||
| ) |
| array af::svd | ( | const array & | in, |
| bool | is_diag = false |
||
| ) |
Singular values.
Double-precision or complex values require ArrayFire Pro.
| [in] | in | |
| [in] | is_diag | true then produce diagonal matrix of eigenvalues, false then vector of eigenvalues |
| void af::svd | ( | array & | s, |
| array & | u, | ||
| array & | v, | ||
| const array & | in | ||
| ) |
Singular values with unitary bases: in = u * s * v.
| [out] | s | singular values |
| [out] | u | left unitary matrix |
| [out] | v | right unitary matrix |
| [in] | in | The input matrix. |